The CD4068B types are supplied in 14-lead dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline package (NSR suffix), and in chip form (H suffix).

Features:
- Medium-Speed Operation:
 \[t_{PH} < t_{PLH} < 75 \text{ ns (typ.) at } V_{DD} = 10 \text{ V} \]
- Buffered inputs and outputs
- 5-V, 10-V, and 15-V parametric ratings
- Standardized symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 \(\mu \text{A} \) at 18 V
- Over full package-temperature range: 100 \(\text{nA} \) at 18 V and 25°C
- Noise margin (over full package-temperature range): 1 V at \(V_{DD} = 5 \) V
 2 V at \(V_{DD} = 10 \) V
 2.5 V at \(V_{DD} = 15 \) V
- Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices"
CD4068B Types

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, V_{DD}
- Voltages referenced to V_{SS} Terminal
 - $-0.5V$ to $+20V$

INPUT VOLTAGE RANGE, ALL INPUTS
- $-0.5V$ to $V_{DD} +0.5V$

DC INPUT CURRENT, ANY ONE INPUT
- $\pm 10mA$

POWER DISSIPATION PER PACKAGE (P_D):
- For $T_A = -55^\circ C$ to $+100^\circ C$... 500mW
- For $T_A = +100^\circ C$ to $+125^\circ C$... Derate Linearity at 12mW/$^\circ C$ to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

FOR $T_A =$ FULL PACKAGE-TEMPERATURE RANGE (All Package Types) 100mW

OPERATING-TEMPERATURE RANGE (T_A)
- $-55^\circ C$ to $+125^\circ C$

STORAGE TEMPERATURE RANGE (T_{stg})
- $-65^\circ C$ to $+150^\circ C$

LEAD TEMPERATURE (DURING SOLDERING):
- At distance $1/16 \pm 1/32$ inch (1.59 ± 0.79mm) from case for 10s max $+265^\circ C$

Fig. 4 - Typical output high (source) current characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS
CD4068B Types

Fig. 9 - Typical voltage transfer characteristics (NAND output).

Fig. 10 - Typical dynamic power dissipation as a function of frequency.

Fig. 11 - Quiescent-device-current test circuit.

Fig. 12 - Input current test circuit.

Fig. 13 - Input-voltage test circuit.

Fig. 14 - Dynamic power dissipation test circuit.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^-3 inch).
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated